

GREEN ASSESSMENT STAGE 1: RAPID MAPPING Geospatial Training On Rapid Mapping for Green Assessment

The geospatial training manual aims to teach geospatial practitioners on a particular method of developing a Stage 1 Green Assessment map to quickly determine the land surface changes, which has occurred after an extreme of exceptional event such as a severe typhoon, deforestation, or revegetation.

This publication was produced by the USAID Sustainable Interventions for Biodiversity, Oceans, and Landscapes Project under Agreement No. 72049220CA00005 and prepared by RTI International and consortium partners at the request of the United States Agency for International Development. This document is made possible by the support of the American people through the United States Agency for International Development. Its contents are the sole responsibility of RTI and its consortium and do not necessarily reflect the views of USAID or the U.S. Government.

Philippines Sustainable Interventions for Biodiversity, Oceans, and Landscapes (SIBOL)

Geospatial Training On Rapid Mapping for Green Assessment

Green Assessment Stage 1: Rapid Mapping

We acknowledge the **Geospatial Team** that developed this manual and whose members are **Kristine Andaya** (Geographer), **Dr. Oliver Coroza** (Geospatial Specialist), and **Czeskian Realo** (Geographer).

CCIPH Communications Manager: Mervin John de Roma Associate Editor: Pauline Abello | Design and Layout: Roy Oliver Corvera

Table of Contents

List of Tables	
List of figures	1
Acronyms	11
Preface	12
I. Training Design	13
Course Content	
1.1: Overview	13
1.2: Objectives	14
1.3: Expected Outputs	15
1.4: Target Participants	16
1.5: Venue Requirements	16
1.6: Training Resources	16
1.7: Course Methodology	17
1.8: Training Content	20
1.9: Post-training Activities	22
II. Lessons	
1: Introduction to Green Assessment Framewo	ork 23
2.1: Introduction to Geographic Information S	ystem 49
2.2: Introduction to QGIS and Basic Map Layo	uting 50
Exercise 1: Creating a Map Layout	51
3: Land Cover, Land Use and Land Classification	on 53
4: Land Cover Classification for Green Assessr	nent 54
5: Basic Theory and Concepts of Remote Sens	sing 57
6: Land Cover and Change Detection Due to a the Electromagnetic Spectrum	an Exceptional or Extreme Event using 64
7: Normalized Difference Vegetation Index for Stage 1	r Rapid Mapping in Green Assessment 65
Exercise 2: Sourcing of Notable Free Satell	ite Images 67
8: Sourcing of Notably Free Satellite Image	68

Exercise 3: Processing of Satellite Images	103
9: Processing of Satellite Images	104
Exercise 4: Spatial Analysis for Identifying	Regions of Interest 117
10: Spatial Analysis for Identifying Regions of	Interest by Working with Raster and
Vector Data	119
Exercise 5: Reclassifying Satellite Images	138
11: Reclassifying Satellite Image Values	139
Exercise 6: Establishment of Reference Po	oints 146
12: Establishment of Reference Points	147
Exercise 7: Produce Map Layouts	153

List of Tables

Table 1	Expected Output from this Stage 1 of Green Assessment	15
Table 2	Course Methodology	17
Table 3	Aerial Survey Sampling Effort in Palawan	31
Table 4	Satellite Platforms used in Spatial and Temporal Resolutions	63
Table 5	NDVI Values for Possible Land Cover Categories	67
Table 6	Advantages and Disadvantages of using Google Earth Engine	84
Table 7	Sentinel Band Combinations	107
Table 8	Code Values to Raster Layers for Analysis	125
Table 9	NDVI Range of Values and Corresponding Symbology and Land Classification	143
Table 10	NDVI Reclassified Values and their Corresponding HTML Notations	145

List of Figures

Figure 1	Workflow of Stage 1 of Green Assessme <mark>nt</mark>	14
Figure 2	Processes, Input and Output of Green Assessment Framework	24
Figure 3	Simplified Green Assessment Framework Stages	24
Figure 4	Green Assessment Stage 1 Rapid Appraisal	25
Figure 5	Pre-Odette Event Vegetation Map	26
Figure 6	Post-Odette Event Vegetation Map	27
	The Aller and the second s	

Figure 7	Pre and Post-Odette Event Normalized Vegetation Index (NDVI) Comparison Map	27
Figure 8	Green Assessment Stage 2 Ground Validation Surveys to Assess Impacts to HCVs	28
Figure 9	Courtesy calls and vetting with key agencies of the Green Assessment Framework Stage 2: Vetting and Courtesy Calls	29
Figure 10	Capacity building activities conducted prior to ground validation surveys	29
Figure 11	Aerial Ground Truthing Survey using RPAS	30
Figure 12	Processed drone image from the aerial ground truthing survey of mangrove forest in San Miguel, Roxas	30
Figure 13	Rapid Biodiversity Assessment	33
Figure 14	Herpetofauna near water bodies	34
Figure 15	Observed Carcasses	34
Figure 16	Dominance of insect bats in Puerto Princesa Subterranean River and Natural Park	35
Figure 17	Bird Detection in Puerto Princesa Subterranean River and Natural Park and Cleopatra's Needle Critical Habitat	35
Figure 18	High percentage of crown defoliation and broken stems in barangay Marufinas	36
Figure 19	Understorey and ground cover vegetation underneath the fallen logs	36
Figure 20	Increase in Leaf litter due to defoliation and dried epiphytes	37
Figure 21	Emergent trees were uprooted or broken from the buttress. Small to medium sized trees were broken in the middle.	37
Figure 22	Uprooted trees and exposed large rocks near the rivers and creeks of Kalakawasan, Tanabag.	38

Figure 23	Palawan Santan (left) and Palm (right) as opportunistic species	38
Figure 24	Ground Assessment Results of Forests in Palawan	39
Figure 25	Ground Assessment Results of NTFP Areas in Palawan	40
Figure 26	Ground Assessment Results of Hunting Grounds in Palawan	40
Figure 27	Ground Assessment Results of Residential Area in Palawan	41
Figure 28	Ground Assessment Results of Cropland in Palawan	41
Figure 29	Youth training using Earthranger	42
Figure 30	Tracks and Sampling Points shown in the Earthranger platform and dashboard	42
Figure 31	Green Assessment Stage 3 Data Analysis and Interpretation	43
Figure 32	Post- Odette Event Vegetation Map (Fallen Trees)	44
Figure 33	Post- Odette Event Vegetation Map (Damaged Coconut Trees and Damaged Mangroves)	44
Figure 34	Habitat Suitability Model of Palawan Hornbill during Pre- Odette (2021)	45
Figure 35	Habitat Suitability Model of Palawan Hornbill during Post- Odette (2021)	45
Figure 36	pecies Congruence of 11 Forest Birds in PPSRNP and CNCH Key Biodiversity Area during Pre- Odette	46
Figure 37	Species Congruence of 11 Forest Birds in PPSRNP and CNCH Key Biodiversity Area during Post- Odette	46
Figure 38	Habitat Suitability of Almaciga during Pre-Odette (2021)	47
Figure 39	Habitat Suitability of Almaciga during Post-Odette (2022)	47
Figure 40	Habitat Suitability of Rattan during Pre-Odette (2021)	48

Figure 41	Habitat Suitability of Rattan during Post-Odette (2022)	48
Figure 42	Forest classes for Stage 1 and Stage 2 of Green Assessment.	54
Figure 43	Cropland classes for Stage 1 and Stage 2 of Green Assessment.	55
Figure 44	Wetland classes for Stage 1 and Stage 2 of Green Assessment.	55
Figure 45	Grassland classes for Stage 1 and Stage 2 of Green Assessment.	55
Figure 46	Settlement Classes for Stage 1 and Stage 2 of Green Assessment.	56
Figure 47	Other Lands classes for Stage 1 and Stage 2 of Green Assessment.	56
Figure 48	Remote Sensing Technologies	58
Figure 49	Advantages and Disadvantages of Different Types of Sensors	58
Figure 50	Passive Remote Sensing Components	59
Figure 51	Electromagnetic Spectrum	60
Figure 52	Spectral Signature	60
Figure 53	Active Sensor	61
Figure 54	Passive Sensor	61
Figure 55	Spatial Resolution	62
Figure 56	Multispectral and Hyperspectral Band	63
Figure 57	Radiometric Resolution	63
Figure 58	Earth Explorer Interface	69

Figure 59	Searching for Known Feature/ Place in Earth Explorer	70
Figure 60	Coordinates of Known Feature/Place Displayed in Polygon Section	70
Figure 61	Coordinates List of the Edges of the Bounding Layer	71
Figure 62	Adding Known Coordinates to Define AOI Extent	72
Figure 63	Defining the AOI Extent using Circular Bounds	73
Figure 64	Cloud Cover	74
Figure 65	Date Range	74
Figure 66	Selecting Data Set(s)	75
Figure 67	Additional Criteria	76
Figure 68	Results Preview	77
Figure 69	Show Browse Overlay and Download Dataset	77
Figure 70	ESA Copernicus Open Hub	78
Figure 71	ESA Copernicus Sign In	79
Figure 72	ESA Copernicus Sign Up	79
Figure 73	ESA Copernicus Defining the Extent and Adding Search Filters	80
Figure 74	ESA Copernicus Download Product	80
Figure 75	Planet Website Interface and Log in/ Sign Up Button	81
Figure 76	Planet Website Dashboard	81
Figure 77	Planet Explorer Interface	82
Figure 78	Planet Explorer Defining Area of Interest and Ordering Scenes	83

Figure 79	Google Earth Engine Interface	83
Figure 80	Google Earth Engine Code Editor Interface	84
Figure 81	GEE Script Manager	87
Figure 82	Accessing Datasets using Search Bar in GEE	88
Figure 83	Initializing the Script in GEE	89
Figure 84	Filtering the Dates in GEE	89
Figure 85	Setting the Map Center in GEE	90
Figure 86	Downloading Imagery using AOI in GEE	91
Figure 87	Downloading Landsat 8 NDVI from Sample Script	92
Figure 88	Accessing Sentinel 2 Dataset in GEE	93
Figure 89	Examining the scripts of Sentinel 2 in the Code Editor	94
Figure 90	Delineating the bounding region as AOI	94
Figure 91	Trying the September to October 2022 Date Range of the Image in GEE	95
Figure 92	Trying the January to October 2022 Date Range of the Image in GEE	95
Figure 93	Legend in GEE	96
Figure 94	Assigning Band Parameters for Sentinel 2 Dataset	96
Figure 95	Accessing Landsat 8 Dataset in GEE	97
Figure 96	January to March 2022 Landsat 8 Image	97
Figure 97	January to June 2022 Landsat Image	97

Figure 98	January to October 2022 Landsat Image	98
Figure 99	Accessing Planet & NICFI Data Catalogue from the Search Bar in GEE	98
Figure 100	Access to Sign Up Page for Planet & NICFI from GEE	99
Figure 101	Connecting to a NICFI Data Mosaic in GEE	100
Figure 102	Loading Planet NICFI Dataset in GEE	101
Figure 103	Displaying NDVI of the Planet Dataset in GEE	102
Figure 104	Downloading Planet Dataset in GEE	104
Figure 105	Loading Raster from the Data Source Manager	105
Figure 106	Loading Raster from the Menu Bar	105
Figure 107	Loading Raster through Drag and Drop from the Layers Folder	105
Figure 108	Loading Merge Tool from the Menu Bar	106
Figure 109	Selecting Raster Layers to Merge	106
Figure 110	Setting the Raster Output Name and Location	106
Figure 111	Initializing Merge	107
Figure 112	Merged Raster Layer Output	109
Figure 113	Symbol Properties of the Merged Sentinel Raster	109
Figure 114	True Color of Palawan Sentinel 2 Image	110
Figure 115	Infrared Color of Palawan Sentinel 2 Image	110
Figure 116	Accessing the Manage and Install Plugins in QGIS	111

Figure 117	Installing the Semi-Automatic Classification Plugin in QGIS	112
Figure 118	Semi-Automatic Classification Plugin in the QGIS Menu Bar	112
Figure 119	Semi-Automatic Classification Plugin Window	113
Figure 120	Split Raster using the Semi-Automatic Classification Plugin	113
Figure 121	Accessing Raster Calculator from the Menu Bar and Processing	114
Figure 122	Extracting Raster Bands using Raster Calculator	114
Figure 123	Accessing the Rearrange bands from the Processing Toolbox	115
Figure 124	Extracting Raster Bands using Rearrange Band Tool	115
Figure 125	Accessing NDVI using the Raster Calculator	116
Figure 126	Setting the Reference Layer and Output Location of the computed NDVI	116
Figure 127	Spatial Analysis Steps	119
Figure 128	Hillshade	121
Figure 129	Hillshade from the Processing Toolbox	121
Figure 130	Hillshade Parameters	122
Figure 131	Hillshade Output	122
Figure 132	Slope from the Processing Toolbox	123
Figure 133	Slope Parameters	123
Figure 134	Slope Output	123
Figure 135	Aspect from the Processing Toolbox	124

Figure 136	Aspect Parameters	124
Figure 137	Aspect Output	124
Figure 138	Land Cover Layer	126
Figure 139	Reclassifying the Land Cover Layer	127
Figure 140	Reclassifying the Slope Layer	127
Figure 141	Reclassifying the Aspect Layer	128
Figure 142	Raster Calculator	129
Figure 143	NDVI Difference in Raster Calculator	129
Figure 144	Reclassifying the NDVI Difference Layer	130
Figure 145	Multi-ring Buffer	131
Figure 146	Road Buffer Initial Output	132
Figure 147	Accessing the Dissolve Tool from the Vector Menu Bar	132
Figure 148	Road Buffer Dissolve Parameters	133
Figure 149	Dissolved Road Buffer Output	133
Figure 150	Converting Road Buffer Vector Layer to Raster	134
Figure 151	Reclassifying the Road Buffer Layer	134
Figure 152	Center Buffer	135
Figure 153	Reclassifying the Center Buffer	136
Figure 154	Final Analysis Raster Calculator	137
Figure 155	NDVI Image Stacking	140

Figure 156	Stacked NDVI Layer Symbology	140
Figure 157	NDVI Difference after Image Stacking	141
Figure 158	Reclassifying NDVI values to 8 Land Cover Classes	143
Figure 159	NDVI Symbology	144
Figure 160	Pre- Odette Reclassified NDVI (2021)	145
Figure 161	Post- Odette Reclassified NDVI (2022)	145
Figure 162	Generating Random Points within the Barangay Boundary	148
Figure 163	Deleting fields in the Attribute Table of Random Points	148
Figure 164	Adding fields in the Attribute Table of Random Points	149
Figure 165	Identifying the Pre-Event and Post-Event Land Cover in the Attribute Table	150
Figure 166	0.5 ha and 1 ha Polygons over the NDVI Rasters	150
Figure 167	Training Polygon Toggle Editing	151
Figure 168	Duplicating Feature of Training Polygons	151
Figure 169	Move to Feature Icon	152
Figure 170	Moving the Training Polygon from its Original Location (yellow) to a New Location (Red)	152
Figure 171	Sample Legend for Pre-event and Post-event NDVI Maps	154
Figure 172	Sample Legend for NDVI Stack Map	154

Acronyms

	Area of Interest	
CNCH	Cleopatra's Needle Critical Habitat	
GA	Green Assessment	
GEE	Google Earth Engine	
GIS	Geographic Information System	
GPS	Global Positioning System	
GT	Groundtruth	
HCVA	High Conservation Value Area	
IPCC	Intergovernmental Panel on Climate Change	
LGUs	Local Governm <mark>ent Units</mark>	
NDVI	Normalized Difference Vegetation Index	
NICFI	Norway's International Climate and Forests Initiative	
NTFP	Non-Timber Forest Products	
PCSD	Palawan Cou <mark>ncil for Sustainable Deve</mark> lopment	
PPSRNP	Puerto Princesa Subterranean River and Natural Park	
QGIS	Quantum Geographic Information System	
RPA	Remotely Piloted Aircraft	
RPAS	Remotely Piloted Aircraft System	
ROI	Region of Intere <mark>st</mark>	
SIBOL	Sustainable Interventions for Biodiversity Oceans and Landscapes	
USGS	United States Geological Survey	

Preface

The Green Assessment Framework was developed to determine the magnitude of typhoon-related damages to biodiversity, ecosystems, and ecosystem services. It is currently being piloted in SIBOL's key sites, Puerto Princesa Subterranean River National Park and Cleopatra's Needle Critical Habitat in Palawan, and Siargao Island Protected Landscape and Seascape in Surigao Del Norte. The framework is now for adoption by the Department of Environment and Natural Resources (DENR) for gathering pre and post disaster biodiversity and ecosystem information that will provide the basis for the formulation of management recommendations for green resilience planning. USAID SIBOL, together with DENR Climate Change Service (CCS) as coordinator, will conduct training workshops to build the capacities of DENR on conducting green assessments by maximizing the collection of ecological and socio-economic data to inform strategic planning in post-disaster scenarios.

The Green Assessment Framework has four (4) stages. Stage 1 is the rapid appraisal, which makes use of GIS and RS technology to generate data on vegetation cover and identify any changes in forest surface cover. Stage 2 employs both centralized and citizen science-driven streams of data gathering and actual ground validation surveys. Stage 3 is analyzing the information gathered from Stages 1 and 2 and estimating the extent of damage and changes in land use. Stage 4 involves developing green resilience plans for damages to biodiversity and ecosystem assets.

To start the national capacity development, training on rapid appraisals (stage 1) will be conducted to improve the skills of DENR employees in utilizing geographic information system (GIS) and remote sensing (RS) technologies to capture the difference in vegetation at a phenological status in the aftermath of the typhoon. The results of the rapid appraisal can provide managers with the information needed to identify immediate interventions and direct environmental management efforts. The results will also allow participants to pinpoint damaged hotspots for ground validation surveys in stage 2.

The capacity development activities aim to teach geospatial practitioners on a particular method of developing a Stage 1 green assessment map to quickly determine the land surface changes, which has occurred after an extreme or remarkable event such as a severe typhoon, deforestation or revegetation. Capacity development and mentoring should continue even after the participants have returned to their respective offices to ensure replicability and sustainability. Each regional office is expected to produce maps showing pre-event vegetation index of the identified "pilot" area of interest and post-event vegetation index map (especially for regions that have been recently impacted by typhoons), and preliminary findings from overlapping vegetation change or damage with management zones or other land use plans. Regular meetings will be scheduled with the participants to mentor and monitor their progress and ensure the quality of their outputs.

Training Design

1.1 Overview

This five-day workshop covers lectures and numerous exercises such as: discussions on basic QGIS; principles of remote sensing; land cover and change detection due to an extreme or exceptional event; sourcing, downloading, processing and spatial analysis of satellite imagery; establishment of reference points for ground-truthing and land cover classification; and producing of map layouts. These exercises are geared towards achieving the objectives of the training, as described in Section 1.2.

General Workflow for Performing the Rapid Appraisal Mapping Process

The facilitators shall discuss the rapid appraisal mapping process on green assessment following the workflow on Figure 1 to provide the participants with a better overview of the lectures and exercises that will be conducted.

The training starts with the fundamentals of knowing how to create simple map layouts with the appropriate coordinate reference systems (Review of Basic QGIS). This can be a new knowledge and skill gained for those who do not have any prior experience with mapping, but a refresher for those, who have the previous knowledge of the basic concepts and skills in creating the map layouts.

Facilitators levels-off with the participants' understanding of the concepts by introducing some important definitions of terms in rapid mapping (*Noteworthy terms to ponder*). Once the basic mapping and standard terms are established, discussions on the principles behind the science and technology of Remote Sensing are presented (*Principles of Remote Sensing*).

With the established principles of Remote Sensing, participants are now able to map the vegetation of the pre-, post-event and detect change in their target areas (*Land cover and change detection due to an extreme or exceptional event*). Once participants understand how to do the mapping and the calculations, they will then be oriented on the online data catalogues from provided data at no cost (*Sourcing of notably free satellite images*). The facilitators then demonstrate several ways of seeking and downloading satellite data images (*Satellite image download*). The downloaded satellite images are then processed to provide a vegetation index to rapidly map the forest damage or change in the land cover (*Processing of satellite image*).

Having gained the knowledge and skill on basic mapping, participants will use the vegetation index maps to do terrain analysis, which will be the first exercise on spatial analysis in the training. The aim of this analysis is to find sites where urgent action to visit and render help to the ecosystem can be prioritized. The criteria to find those sites can be set or they can opt to follow the example presented by the facilitators so they can have a quick plan for rapid assessment (*Spatial analysis for identifying regions of interest*). Facilitators will set the categories to reclassify the raster values according to the range of index values to approximate the land cover type participants will visit--possibly based on the most damage sustained by the forest ecosystem (*Reclassifying satellite image values*).

In preparation for Stage 3, in which participants will translate the satellite image (pre- or post-event) into actual land classes found on the ground, they need to undergo Stage 2. This latter stage pertains to the ground-truthing (GT) component to gather enough field data to get to Stage 3. The GT team will have to prepare a map with information consisting of reference points randomly selected on a stratified basis. The area of focus for the region to be worked on should already have been determined on the prior exercises. To be able to standardize the land cover classes to prepare reference points, trainers shall describe a hierarchy of land cover classification according to the Intergovernmental Panel on Climate Change. From these reference points, which the GT team can ground-truth under Stage 2, they can, consequently, prepare training data needed for Stage 3 (*Establishment of reference points in preparation for Stage 2 ground-truthing and Stage 3 land cover classification*). The last exercise for the participants is to prepare map layouts of the: vegetation index, change detection and reference points (*Produce map layouts*).

1.2 Objectives

The capacity development activities aim to improve the management effectiveness of conservation areas by strengthening decision-making instruments which will lead to improved governance of natural resources management. The objectives of this training for the Stage 1 of Green Assessment are the following:

- For participants to be familiarized with the green assessment framework and replicate the methodologies in their respective areas;
- For participants to advance their knowledge and utilization of remote sensing and GIS in conducting rapid appraisals for post-disaster scenarios;

- For participants to enhance their skills in using open source software in executing satellite image processing and analysis; and
- For participants to learn how to pinpoint damaged areas using processed satellite images.

1.3 Expected Outputs

The following are the expected outputs during and after the training:

Expected Outputs During the Training	Expected Outputs After the Training
Expected Outputs During the Training	Expected Outputs After the Training
Locator map of Area of Interest (AOI) for the training exercise	Locator map of Area of Interest (AOI) for the specific work area of the participants
Pre- event vegetation map of AOI	Pre- event vegetation map of AOI
Post-event vegetation map of AOI	Post-event vegetation map of AOI
Vegetation Index Difference map for change/damage detection of AOI	Vegetation Index Difference map for change/damage detection of AOI
Overlaps of change/damage with management zones	
Plan for post-training outputs, including the area of concern, event of focus (e.g., typhoon, deforestation, forest fire and other events resulting in forest ecosystem changes)	Overlaps of change/damage with management zones

Table 1. Expected Output from this Stage 1 Training

1.4 Target Participants

Qualifications and Requirements for Participants:

- Bachelor's degree in natural sciences (e.g., Biology, Forestry, Environmental Science, Geology, and related backgrounds);
- Has knowledge on performing basic statistics and basic mapping;
- Able to follow technical instructions on mapping;
- Prior experience in conducting biodiversity surveys and monitoring is desired, but not required;
- Participants must bring their personal or work laptops during the training; and
- Participants must complete an online pre-registration form before attending.

1.5 Venue Requirements

The venue must have the following:

- very stable internet connection, preferably at high speed;
- have at least 2 screens and projectors;
- very good sound system;
- can hold at least 40 participants;
- classroom-type seating arrangement;
- extension wires for each table; and
- Participants must be checked in the same venue/accommodation for the training duration.

1.6 Training Resources

The following materials are provided to the participants:

- Training Kit (Programme, Lanyard, Notes, Pen, and Paper);
- Wifi Passwords;
- Extension Wires; and
- USBs with QGIS Installer and Data Sets (one provided in each table/team).

Each participant are required to bring one laptop unit or workstation with the following minimum requirements:

- Hard drive: at least 500 HDD;
- Memory: at least 16GB RAM;
- Processor type: at least Intel core i7 processor;
- 32/64 bit; and
- Operating system: at least Windows 7.

I Training Design

1.7 Course Methodology

Different approaches will be employed to the topics covered during the training. For instance, while there will be lectures for all the topics, some will involve exercises to measure the learning of the participants, and presentation of case studies to demonstrate the application of GIS on Green Assessment for Ecosystems disaster mapping.

Topics	Targets	Approach
Introduction to Green Assessment Framework	 To learn how the Green Assessment framework was developed. To be introduced to four stages of the green assessment framework To be familiar with the expected outputs from the four stages of green assessment 	Lecture with powerpoint presentations (showing sample maps and other fieldwork video materials)
Introduction to GIS	 To review on the basic concepts of GIS and the different real-life data that can be represented as GIS data GIS data To differentiate spatial and non-spatial data To be familiar with projections and different coordinate systems To distinguish Projected Coordinate System (PCS) with Geographic Coordinate System (GCS) and know when to use them 	Lecture with powerpoint presentation
Introduction to QGIS	 To familiarize with the QGIS interface and learn the advantage of using the software To perform basic GIS processing using QGIS such as (adding the layers, navigating the map canvas, choosing appropriate symbologies, layouting of a basic map, and saving and exporting work) 	Lecture with powerpoint presentation; demonstration of the use and navigation of the software; hands- on mapping activity; and Discussion on the participants' mapping output presentation

 Table 2. Course Methodology

Training Design: 1.7 Course Methodology, Table 2

Topics	Targets	Approach
Land Cover, Land use and Land classification	To differentiate land cover, land use and land classification	Lecture with powerpoint presentation
Land cover classification for Green Assessment	To familiarize with six different land cover classifications defined together with the Palawan Council for Sustainable Development	Lecture with powerpoint presentation
Principles of Remote Sensing	 To learn about the basic theory and concepts of remote sensing and its importance in rapid mapping To familiarize with different remote sensing technologies and their advantages and disadvantages 	Lecture with powerpoint presentation
Sourcing of Notable Free Satellite Images: Google Earth Engine as a Data Source and Image Processor Using the Sentinel 2 Data Collection of Google Earth Engine Using the Sentinel 2 Data Collection of Google Earth Engine	 To familiarize with the different free satellite imagery sources To download satellite images for rapid assessment To familiarize with the different free satellite imagery sources To download satellite images for rapid assessment 	Lecture with powerpoint presentation; on-the fly demonstration of image downloading; and hands-on activity
Processing of Satellite Images	 To learn about different band combinations using QGIS To compare satellite images of different imagery dates using image stacking 	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity

Training Design: 1.7 Course Methodology, Table 2

Topics	Targets	Approach
Spatial Analysis for Identifying Regions of Interest by Working with Raster	To identify regions of interest for green assessment by working with raster and vector data	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity
Reclassifying satellite image values	To visually represent the land cover from satellite images by reclassifying satellite's raster image values according to NDVI thresholds for each land cover class	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity
Spatial Analysis for Identifying Regions of Interest by Working with Raster	To identify regions of interest for green assessment by working with raster and vector data	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity
Establishment of Reference Points	To determine reference points for ground-truth survey	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity
Producing maps	To layout and export maps of reference points and area of interest using QGIS	Lecture with powerpoint presentation, on-the fly demonstration of image downloading and hands-on activity

1.8 Training Content

The Geospatial training on rapid mapping for Green Assessment covers the following topics:

Green Assessment Framework

This section discusses how the Green Assessment framework was conceptualized from the extent of damages of Typhoon Odette in Palawan. The maps comparing the satellite images of pre-Odette and post-Odette in Palawan were showing their respective Normalized Difference Vegetation Indices (NDVI), indicating the complete transformation of the surrounding vegetation indicating a new perspective of responding to calamities in the country, which are ecosystems-based. This emphasizes the need for a green assessment framework to improve the disaster response to calamities brought about to our ecosystems. The four stages in achieving the green assessment framework were also discussed based on how it was implemented in the pilot sites of Palawan.

Basic GIS Concepts

This provides a brief introduction to the basic concepts of the geographical information system (GIS) and its real-life geospatial representation.

Basic Quantum GIS Processes and Map Layout

This section covers the introduction to Quantum Geographic Information System (QGIS), as the open-source GIS application, recommended for use during the training, because this is more accessible to the local government units with limited financial capacity to obtain licenses for other GIS software. The software's interface and function are explored by navigating through the map canvas, changing layers' symbologies, and layouting and exporting the maps.

Land Cover, land use and land classification

To align the understanding among trainers and participants on relevant terms that is often used interchangeably, this section focuses on differentiating land cover, land use and land classification.

Principles of Remote Sensing

This part of the training focuses on explaining the basic theory and concepts behind the use of Remote Sensing technology and how these are important in the execution of rapid mapping. Real-life application of remote sensing technologies are also provided during this part of the training while highlighting how the electromagnetic spectrum and the type of sensors work for our purpose.

Land Cover and Change Detection due to an Exceptional or Extreme Event using the Electromagnetic Spectrum

This section emphasizes the use of satellite images for this training and how multispectral satellites work to detect and record the electromagnetic spectrum. It relates how the satellite images are being used to detect changes on the vegetation due to extreme events such as defoliation and depletion of leaves as a substantial indicator of the impact of typhoons on vegetation. After this then the trainer introduces the concept of the Normalized Difference Vegetation index or NDVI.

Sourcing of Notably Free Satellite Image

This part of the training presents the different websites and processes to source free satellite images that can be used in the rapid appraisal mapping of the affected area. This includes the more popular free-to-use satellite imagery repositories such as USGS/NASA Earth Explorer for Landsat images (30-m resolution) and ESA Copernicus Open Access Hub for Sentinel images (10-m resolution). The Google Earth Engine (GEE) is also introduced here as a repository where both Landsat and Sentinel images can be obtained and processed using scripts. Succeedingly, the Planet data catalogue, which can also be accessed using GEE by registering through Planet's website, is introduced in this section.

Merging Satellite Images

This section focuses on the merging of the downloaded satellite images using QGIS and how these can be visualized using different raster band colors.

Introduction to Raster Bands

Since some satellite images have too many raster bands, which sometimes are not needed in the analysis, raster band extraction is introduced in this section for a more efficient processing of satellite images. There are three methods for raster band extraction introduced here such as the use of a: semi-automatic classification plugin; raster calculator and the 'rearrange band' tool in QGIS.

Spatial Analysis

This section focuses on spatial analysis to solve the problem of identifying and prioritizing regions of interest (ROIs) by working both with raster and vector data. The sample criteria presented to identify these ROIs are NDVI difference, slope, aspect, land cover, proximity to road and city center, which can be combined cartographically using different QGIS tools to help solve the spatial problem.

NDVI Calculation

Using the satellite images, the trainors teach the extracting of RED and NIR bands in this section, which is necessary for the NDVI calculation of pre (2021) and post- Odette (2022). The steps to compute NDVI for both time periods using a raster calculator are demonstrated, where it involves stacking pre-NDVI and post-NDVI images using the Semi-Automatic Classification Plugin (SCP). The resulting layer of this process can indicate where NDVI values decreased from the two time periods by assigning raster symbologies. NDVI reclassification using a raster calculator is introduced, because this can be necessary in some situations where the assessments are being made.

Generation of Random points for Reference Points Map

This section demonstrates how random points can be generated using the QGIS tool called *Random Points in Layer Bounds* for picking reference points that will be used in the ground-truthing activity for the second stage of the Green Assessment.

1.9 Post-training Activities

After the training proper, the participants are asked to continue working on their outputs including maps showing the pre-event vegetation index of the identified "pilot" area of interest and post-event vegetation index map (especially for regions that have been recently impacted by typhoons), and preliminary findings from overlapping vegetation change/damage with management zones or other land use plans. Regular meetings should be scheduled with the participants to mentor and monitor their progress, and ensure the quality of their outputs. A face-to-face conference will be scheduled afterwards where the participants can present their results and make initial work plans for conducting the second stage of the green assessment.

Lesson 1 Introduction to Green Assessment Framework

Duration	Purpose of Learning
30 Minutes	 To learn how the Green Assessment framework was developed To be introduced to four stages of the green assessment framework To be familiar with the expected outputs from the four stages of green assessment

Requirements:

1=

• Lecture with powerpoint presentations (showing sample maps and other fieldwork video materials)

Since the series of training that will be conducted for SIBOL will revolve around Green Assessment, it is important that participants will be given an introductory lecture about the Green Assessment Framework, its stages, processes and outputs.

Green Assessment Framework

The Green Assessment Framework is a stepwise process developed by SIBOL in response to the aftermath of typhoon Odette or severe tropical storm Rai. This is an integration of High Conservation Value Area Assessment (HCVA) and post-disaster response. This is composed of four stages such as: rapid appraisal (stage 1); ground validation surveys (stage 2); analysis and interpretation (stage 3); and green reconstruction and resilience planning (stage 4). Processes, Input and Output of Green Assessment Framework are shown in the figure below.

Lesson 1: Introduction to Green Assessment Framework

Green Assessment Framework Stages

Stage 1: Rapid Appraisal

This stage covers the standardization of methods and software for the initial step of the green assessment. The pre- and post-Odette satellite images are compared along with the primary and secondary data on land cover, classification, biodiversity, and drivers of land cover change to produce damage maps based on the significant vegetation change computed using the Normalized Difference Vegetation Index (NDVI).

Case Study: Palawan Green Assessment Preliminary Results

The maps shown on Figures 5 to 7 are the results of the rapid appraisal mapping in the SIBOL's four pilot sites for Green Assessment: Puerto Princesa Subterranean River and Natural Park (PPSRNP), Cleopatra's Needle and Critical Habitat (CNCH), Roxas and San Vicente. This is the area of interest (AOI) agreed upon with the Palawan Technical Working Group for analysis during the start of the year 2022.

The map on Figure 5 shows the normalized difference vegetation index (NDVI) for January 2021 to November 2021 which is eleven months and two weeks prior to the typhoon. Higher NDVI values may denote mixed vegetation and moderate to dense vegetation, while lower NDVI values are possibly cropland, settlements or non-forest vegetation.

